445 research outputs found

    Steady States of a Nonequilibrium Lattice Gas

    Full text link
    We present a Monte Carlo study of a lattice gas driven out of equilibrium by a local hopping bias. Sites can be empty or occupied by one of two types of particles, which are distinguished by their response to the hopping bias. All particles interact via excluded volume and a nearest-neighbor attractive force. The main result is a phase diagram with three phases: a homogeneous phase, and two distinct ordered phases. Continuous boundaries separate the homogeneous phase from the ordered phases, and a first-order line separates the two ordered phases. The three lines merge in a nonequilibrium bicritical point.Comment: 14 pages, 24 figure

    Anomalous nucleation far from equilibrium

    Full text link
    We present precision Monte Carlo data and analytic arguments for an asymmetric exclusion process, involving two species of particles driven in opposite directions on a 2×L2 \times L lattice. We propose a scenario which resolves a stark discrepancy between earlier simulation data, suggesting the existence of an ordered phase, and an analytic conjecture according to which the system should revert to a disordered state in the thermodynamic limit. By analyzing the finite size effects in detail, we argue that the presence of a single, seemingly macroscopic, cluster is an intermediate stage of a complex nucleation process: In smaller systems, this cluster is destabilized while larger systems allow the formation of multiple clusters. Both limits lead to exponential cluster size distributions which are, however, controlled by very different length scales.Comment: 5 pages, 3 figures, one colum

    Stationary correlations for a far-from-equilibrium spin chain

    Full text link
    A kinetic one-dimensional Ising model on a ring evolves according to a generalization of Glauber rates, such that spins at even (odd) lattice sites experience a temperature TeT_{e} (ToT_{o}). Detailed balance is violated so that the spin chain settles into a non-equilibrium stationary state, characterized by multiple interactions of increasing range and spin order. We derive the equations of motion for arbitrary correlation functions and solve them to obtain an exact representation of the steady state. Two nontrivial amplitudes reflect the sublattice symmetries; otherwise, correlations decay exponentially, modulo the periodicity of the ring. In the long chain limit, they factorize into products of two-point functions, in precise analogy to the equilibrium Ising chain. The exact solution confirms the expectation, based on simulations and renormalization group arguments, that the long-time, long-distance behavior of this two-temperature model is Ising-like, in spite of the apparent complexity of the stationary distribution.Comment: 9 page

    Novel Quenched Disorder Fixed Point in a Two-Temperature Lattice Gas

    Full text link
    We investigate the effects of quenched randomness on the universal properties of a two-temperature lattice gas. The disorder modifies the dynamical transition rates of the system in an anisotropic fashion, giving rise to a new fixed point. We determine the associated scaling form of the structure factor, quoting critical exponents to two-loop order in an expansion around the upper critical dimension dc=7_c=7. The close relationship with another quenched disorder fixed point, discovered recently in this model, is discussed.Comment: 11 pages, no figures, RevTe

    Driven Diffusive Systems: An Introduction and Recent Developments

    Full text link
    Nonequilibrium steady states in driven diffusive systems exhibit many features which are surprising or counterintuitive, given our experience with equilibrium systems. We introduce the prototype model and review its unusual behavior in different temperature regimes, from both a simulational and analytic view point. We then present some recent work, focusing on the phase diagrams of driven bi-layer systems and two-species lattice gases. Several unresolved puzzles are posed.Comment: 25 pages, 5 figures, to appear in Physics Reports vol. 299, June 199

    Coarsening of "clouds" and dynamic scaling in a far-from-equilibrium model system

    Full text link
    A two-dimensional lattice gas of two species, driven in opposite directions by an external force, undergoes a jamming transition if the filling fraction is sufficiently high. Using Monte Carlo simulations, we investigate the growth of these jams ("clouds"), as the system approaches a non-equilibrium steady state from a disordered initial state. We monitor the dynamic structure factor S(kx,ky;t)S(k_x,k_y;t) and find that the kx=0k_x=0 component exhibits dynamic scaling, of the form S(0,ky;t)=tβS~(kytα)S(0,k_y;t)=t^\beta \tilde{S}(k_yt^\alpha). Over a significant range of times, we observe excellent data collapse with α=1/2\alpha=1/2 and β=1\beta=1. The effects of varying filling fraction and driving force are discussed

    ``Weather'' Records: Musings on Cold Days after a Long Hot Indian Summer

    Full text link
    We present a simple, pedagogical introduction to the statistics of extreme values. Motivated by a string of record high temperatures in December 1998, we consider the distribution, averages and lifetimes for a simplified model of such ``records.'' Our ``data'' are sequences of independent random numbers all of which are generated from the same probability distribution. A remarkable universality emerges: a number of results, including the lifetime histogram, are universal, that is, independent of the underlying distribution.Comment: 14 pages, 3 figures. Invited paper for American Journal of Physic

    Controlling surface morphologies by time-delayed feedback

    Full text link
    We propose a new method to control the roughness of a growing surface, via a time-delayed feedback scheme. As an illustration, we apply this method to the Kardar-Parisi-Zhang equation in 1+1 dimensions and show that the effective growth exponent of the surface width can be stabilized at any desired value in the interval [0.25,0.33], for a significant length of time. The method is quite general and can be applied to a wide range of growth phenomena. A possible experimental realization is suggested.Comment: 4 pages, 3 figure
    • …
    corecore